Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue.

نویسندگان

  • Geoffrey J M Parker
  • Daniel C Alexander
چکیده

Recently developed methods to extract the persistent angular structure (PAS) of axonal fibre bundles from diffusion-weighted magnetic resonance imaging (MRI) data are applied to drive probabilistic fibre tracking, designed to provide estimates of anatomical cerebral connectivity. The behaviour of the PAS function in the presence of realistic data noise is modelled for a range of single and multiple fibre configurations. This allows probability density functions (PDFs) to be generated that are parametrized according to the anisotropy of individual fibre populations. The PDFs are incorporated in a probabilistic fibre-tracking method to allow the estimation of whole-brain maps of anatomical connection probability. These methods are applied in two exemplar experiments in the corticospinal tract to show that it is possible to connect the entire primary motor cortex (M1) when tracing from the cerebral peduncles, and that the reverse experiment of tracking from M1 successfully identifies high probability connection via the pyramidal tracts. Using the extracted PAS in probabilistic fibre tracking allows higher specificity and sensitivity than previously reported fibre tracking using diffusion-weighted MRI in the corticospinal tract.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anatomical Variations of Circle of Willis in 57 Human Brains

Purpose: The circle of willis is responsible for blood supply of brain, which may suffer from anatomical variations. These disturbances can lead to aneurysm or even arterial rupture. The purpose of this study was to evaluate the anatomical structure of the cerebral arteries forming the circle of willis in adult cadavers. Also, cerebral versus non- cerebral versus non-cerebral arterial walls wer...

متن کامل

Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging

The human brain forms a complex neural network with a connectional architecture that is still far from being known in full detail, even at the macroscopic level. The advent of diffusion MR imaging has enabled the exploration of the structural properties of white matter in vivo. In this article we propose a new forward model that maps the microscopic geometry of nervous tissue onto the water dif...

متن کامل

Functional connectivity of the angular gyrus in normal reading and dyslexia.

The classic neurologic model for reading, based on studies of patients with acquired alexia, hypothesizes functional linkages between the angular gyrus in the left hemisphere and visual association areas in the occipital and temporal lobes. The angular gyrus also is thought to have functional links with posterior language areas (e.g., Wernicke's area), because it is presumed to be involved in m...

متن کامل

Parcellations and connectivity patterns in human and macaque cerebral cortex

To decipher brain function, it is vital to know how the brain is wired. This entails elucidation of brain circuits at multiple scales, including microscopic, mesoscopic, and macroscopic levels. Here, we review recent progress in mapping the macroscopic brain circuits and functional organization of the cerebral cortex in primates—humans and macaque monkeys, in particular. There are many similari...

متن کامل

Induction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System

Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 360 1457  شماره 

صفحات  -

تاریخ انتشار 2005